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Executive summary:  

Goals of the research:  
Metamaterials form a new paradigm for design and development of novel optical and optoelectronics 
components[1-6]. A new type of metamaterials, semiconductor metamaterials, operating at long-wave-
IR frequency range, has been recently proposed and experimentally verified by the team [6-8]. In 
comparison with other metamaterial designs, semiconductor structures offer the advantages of  

(i) straightforward fabrication that does not require three-dimensional patterning 
(ii) material compatibility with semiconductor technology,  
(iii) relatively low loss that can be further mitigated by electric pumping via quantum cascade 

(QC) technology 

The goals of the project were to assess the perspectives of semiconductor metamaterials for broadband 
high resolution imaging. Specifically, the project aimed to  

(1) increase operating bandwidth of the metamaterials by combining several layered structures 
with carefully designed dispersion 

(2) reduce the loss of semiconductor metamaterials by incorporating quantum cascade gain regions 
into the structure, and  

(3) develop a planar focusing system with sub-wavelength focal spot 

Main results:  
With relation to the tasks above, we have  

(1) theoretically developed and experimentally verified a set of multilayered metamaterials with 
negative refraction response spanning the frequency range 8…11 𝜇𝑚 (frequency-independent 
index spanning 8...9.5 𝜇𝑚), leading to the increase of bandwidth of negative refraction by 27% 

(2) designed and fabricated quantum cascade structures integrated into semiconductor 
metamaterials; experimental characterization indicates QC action spectrally overlapping with 
negative refraction region 

(3) theoretically developed a system that is capable of achieving focal spots of the order of 1 𝜇𝑚, 
and a new analytical technique that can be utilized to image subwavelength objects in the far 
field. 
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Goal 1: enhancement of bandwidth of negative refraction of metamaterial  
The basic principle of operation of our semiconductor metamaterial lies in the collective response of 
highly-doped plasmonic layers, interlaced by undoped layers, to the incident long-wave infrared (LWIR) 
light. Since the thickness of individual layer (~80 𝑛𝑚) in this structure is much smaller than the 
wavelength of light (~8 𝜇𝑚), the optical properties of the composite can be described by the effective 
medium theory. In fact, the collective response of the multilayer is identical to the response of a 
homogeneous slab with thickness equal to the total thickness of the multilayer with anisotropic 
dielectric permittivity with components of permittivity tensor given by:  

  𝜖∥ = 𝑎1𝜖1+𝑎2𝜖2
𝑎1+𝑎2

  .................................................................. (1) 

  𝜖⊥ = 𝑎1𝑎2𝜖1𝜖2
𝑎1𝜖2+𝑎2𝜖1

 

where 𝑎1,𝑎2 are the thicknesses of the components of the metamaterial, 𝜖1, 𝜖2 are their permittivities, 
and 𝜖∥ and 𝜖⊥ represent the effective permittivity of the metamaterial along and perpendicular to the 
surface of the layers, respectively.  

The typical dispersion of metamaterial is shown in Fig.1. 
Note that the negative refraction, signified by the 
condition 𝜖∥ > 0, 𝜖⊥ < 0, is limited to the frequencies 
between the frequency where 𝜖1 = 0 and where 𝜖∥ =
0 . Also note that the frequency response of the 
metamaterial is highly dispersive, i.e. effective 
permittivities of the metamaterial strongly depend on 
frequency. Although the design of the metamaterial 
allows the control of dispersion by adjusting the doping 
of plasmonic layers, and thus shifting the negative 
refraction band, the response of the two-component 
system remains dispersive.  

In order to minimize frequency dispersion and to 
enhance the negative refraction band we designed, 
fabricated, and verified a multi-component 
metamaterial, schematically shown in Fig. 2. The basic 
principle of operation of this structure is similar to that 
of multi-lens systems corrected for chromatic aberration. The main difference, however, is the ability of 
the relatively thin metamaterial “correcting” layer to significantly adjust the dispersion of the much 
thicker main layer;  

Two- and four-layer devices have been fabricated and their dispersion has been analyzed using 
reflection/transmission measurements, as described in [6-8]. The dispersion of the system is most 
clearly visualized by the angular position of the Brewster’s angle in the negative refraction regime; the 
spectral width of the this regime can be assessed by measuring the spectral position of the discontinuity 
of the Brewster’s angle (beginning of the negative refraction regime) and by abrupt increase of 
reflection of TE-polarized waves (end of the negative-refraction regime) [6,9,10].  

The spectral response of the baseline sample is compared to that of the two- and four-layer structures 
in Fig.3. Note that the spectrally-corrected structures provide increased bandwidth and significantly 
flatter response as compared to the single-layer system. Also note that the response of the final 

 
Fig. 1:  Dielectric function, 𝜖⊥ and 𝜖∥ of a n+-i-
n+ heterostructure calculated using the 
effective medium theory and nd = 7.5 x 1018 
cm-3.  The inset shows the layered structure 
and relative orientation of the dielectric 
function (𝜖⊥ and 𝜖∥). 



Page | 3  
 

fabricated samples closely matches the desired response of theoretically-optimized structure. 
Quantitatively, operating bandwidth of the sample with 𝑛 metamaterial (multi)layers, defined as  

 𝐵n = 2 𝜆2−𝜆1
𝜆2+𝜆1

  .................................................................... (2) 

with 𝜆1 and 𝜆2 being the limits of the negative refraction region is, yields the following results:  

𝐵1 = 26.2% 

𝐵2 = 32.0% 

𝐵4 = 33.2% 

The frequency-corrective coating thus provides the increase of operating bandwidth is 27%; with flat 
negative refraction regime observed between 8 and 9.5 microns (full negative refraction region 
spanning 8…11 𝜇𝑚 range) [10]. We anticipate that with additional optimization we will be able to 
further extend the operating range and compensate the material dispersion.  

 
 

  

  
  (a)  (b)  (c) 

Fig.2 (a) schematic of the multilayerwith dispersion correction; the thin top layers provide compensation for frequency 
dispersion of the thick bottom layer; (b) dispersion of each individual layer in (a); (c) beam shift due to thick layer in (a) 
alone (dashed line) and the combined beam shift in the dispersion-compensated system   
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Fig.3. Analytically calculated (left) and experimentally measured (right) dispersion of single-stack MM (top), two-stack system 
(middle) and four-stack metamaterial (bottom). Frequency dispersion is visualized by frequency/angular dependence of the 
Brewster’s angle, corresponding to the minimum in TM-polarized reflection. Negative refraction region starts from discontinuity 
of the Brewster angle (~8𝜇𝑚)  and ends when Brewster angle disappears (~11 𝜇𝑚).  
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Goal 2: loss reduction by incorporating the material gain 
As mentioned above, the design of the 
metamaterial represents a multilayered 
system of plasmonic (conducting) and 
dielectric layers. The figure of merit (FOM) 
of the original metamaterial, defined as the 
ratio of the real part of refractive index to 
the imaginary part, varied from 2 to 30 
depending on the angle of incidence and 
wavelength (Fig.4).  

The idea of the current thrust of the 
program was to replace the passive, 
homogeneous layers of the system with 
active quantum cascade multistacks, 
providing electrically-driven optical gain to 
the device, thereby compensating the 
losses in the system and increasing FOM, as 
indicated by the changes in transient 
transmittance (TT), shown in Fig.5.  

 

 
Fig.5 Theoretical calculation of transient transmission as a function of wavelength and incident angle at 10% loss compensation 
[corresponding to ~100 𝑐𝑚−1 at 20°] 

In the course of the project we have fabricated several samples with QC active regions replacing the 
passive dielectric structures; our first tests of the system suggest that  

• The presence of QC regions does not destroy negative refraction response of the system 
• The VI characteristics of the device are identical to those of working QC laser (Fig.6) 

We are in the process of analyzing the data for second generation of samples, where QC band is 
spectrally aligned with strong anisotropy to determine the effect of the optical gain on the FOM.  

 

 
Fig 4. Decay constant 𝛼 and Figure of Merit (FOM) of a passive 
semiconductor metamaterial as a function of angle of incidence 
and frequency 
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Fig.6 Active metamaterials. (a) schematic design of active metamaterial where intrinsic layers are replaced with QCL structures. 
(b) IV characteristics of the test sample. The properties are identical to “conventional” QCLs; (c-d) Transmission (c) and 
reflection (d) spectra of active metamaterials [with no pumping] are similar to those of passive structures 
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Goal 3: development of planar focusing system with subwavelength focal 
spots and of a technique to measure the subwavelength objects in the far 
field  
One of the great benefits of strongly anisotropic metamaterials lies in their ability to propagate 
subwavelength information about the objects into the far-field. This fact is most clearly seen from the 
dispersion relation for the plane wave that propagates inside anisotropic metamaterial:  

 
𝑘⊥2

𝜖∥
+ 𝑘∥

2

𝜖⊥
= 𝜔2

𝑐2
  .................................................................... (3) 

where 𝑘⊥ and 𝑘∥ represent components of the wavevector perpendicular to and parallel to the layers. 
As seen from the above equation, plane waves carrying subwavelength information, corresponding to 
�𝑘∥� ≫ 𝜔/𝑐 = 2𝜋/𝜆0, have real values of 𝑘⊥, and thus propagate in the anisotropic material. This 
behavior is in strong contrast to light propagation in conventional (isotropic) media, where the waves 
with large transverse components of wavevectors must have imaginary component of the wavevector 
along the direction of propagation, resulting in the exponential decay of these modes (often called 
evanescent modes).  

In this work we utilize strong anisotropy of the metamaterial to develop a planar structure for 
subwavelength focusing of light. The idea is to deposit a pre-designed diffraction grating on top of the 
strongly anisotropic medium that would act similar to the well-known Fresnel lens[11] by shaping the 
intensity profile of incident light and assuring the constructive interference of the portions of incident 
beam at the pre-defined point in the bulk of metamaterial. Similar to Fresnel lens approach, the grating 
would break the incident plane wave into a set of Fresnel zones, with the boundaries between 
neighboring Fresnel zones corresponding to the phase shift of 𝜋 in the optical phase of the signal. The 
coordinates of the boundary of the 𝑚-th Fresnel zone are given by the relationship:  

 �𝜖∥𝑓2 + 𝜖⊥𝑥𝑚2 − �𝜖∥𝑓2 + 𝜖⊥𝑥02 = ±𝑚𝜋𝑐
𝜔

  ..................... (4) 

where 𝑥0 is the coordinate of the first open Fresnel zone, and the sign at the right-hand side of the 
equation corresponds to the sign of 𝜖⊥[12].  

 
Fig.7 Subwavelength focusing in hypergratings based on planar metamaterials[?]; sizes and positions of the slits are given by 
Eq.(4); panels (a,b) correspond to low-loss nanowire (a) and nanolayer (c) structures; panels (c,d) show field profiles in focal 
planes; solid lines: in low-loss systems, dashed lines: full loss structures (see [12] for more details).  
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The focusing performance of such hypergrating is illustrated in Fig.7. It is clearly seen that the device is 
capable of achieving sub-micron focal spots in the far-field of the grating at LWIR frequency range.  

Experimental confirmation of the existence of sub-wavelength focal spots is extremely challenging since 
no LWIR near-field microscopy currently exists. In order to get around this fundamental problem, we 
have developed a novel technique for far-field subwavelength imaging. Similar to hypergrating, this 
technique relies on a diffraction grating, this time deposited at the focal plane of the device (Fig.8). As 
known from standard diffraction theory[11], the spectrum of the light transmitted through the grating 
with period Λ will comprise the spectrum of the incident light, combined with the same spectrum 
shifted by a multiple of Bloch vector 2𝜋/Λ. Note that when the period of the grating is smaller than the 
wavelength, the Bloch shift effectively converts evanescent waves (�𝑘∥� > 2𝜋/𝜆0) into propagating 
waves (|𝑘∥ − 2𝜋𝑚/Λ| < 2𝜋/𝜆0), which in principle enables the detection of subwavelength information 
in the far field.  

The potential problem with this technique, however, lies in the fact that the transmitted signal has the 
spectra of propagating and evanescent radiation superimposed on top of each other. Similar problem 
appeared in previous realizations of diffraction grating-based subwavelength imaging [13,14], where the 
subwavelength information was limited to first Bloch zone (𝑚 = 1), the far field resolution was of the 
order of 𝜆0/4, and the distinction between the propagating 𝑚 = 0 and evanescent parts of the 
spectrum was achieved by rotating the polarization of the incident light.  

 
Fig.8 (a) Schematic of the imaging configuration; an object is placed close to the subwavelength plasmonic grating with period   
(at  ) and is irradiated by the plane wavewith incident angle  ; the far-field intensity is measured inside the material with 
permittivity  ; (b) transfer of evanescent information into propagating regime by the m-th diffraction order of the grating; 
normal incidence is assumed 

In the case of hypergrating, we need to decompose the information from several Bloch orders, resulting 
in significant enhancement of far-field resolution (~𝜆0/20). To accomplish the above goal, we vary the 
direction (not polarization) of incident light, measuring the field profile at the given location in the far 
field of the device as a function of the incident angle. We then compute the transfer function 𝑡𝑚 of the 
diffraction grating that provides the ratio of the amplitude of the 𝑚-th Bloch-shifted component behind 
the grating to the original amplitude of the incident light. Finally, we use nonlinear fit[15] to map the 
analytically calculated intensity of the signal  

 
( ) ( ) ( ) ( ) ( )( )

2

0,0,  expexp ,, ∑∑ −−=
m n

mnzmnxnxmxnxnincy zqikxiqkktkkawzxH θ
 ............... (5) 

to the experimentally measured data. This fitting procedure results in the amplitudes of the incident 
signal 𝑎(𝑘𝑥) that can be used to reconstruct the image in front of the grating.  
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Fig.9 Reconstruction (blue solid curves) of single slits with width (a) 𝜆0/2 , (b) 𝜆0/4 , (c) 𝜆0/8 , and (d) 𝜆0/20 ; black dotted lines 
represent the object size;  vacuum-to-vacuum measurement is assumed 

To verify the developed formalism[16], we simulated the far-field intensity distribution, generated by 
several slits ranging from 𝜆0/2 to 𝜆0/20, positioned behind the grating with period Λ = 2𝜆0/3, used the 
fitting technique to recover the size of original slit based on these far-field “measurements”. The results 
of this imaging procedure are illustrated in Fig.9.  

 
Fig.10 reconstruction of the subwavelength focal spot of the hypergrating shown in Fig.7, based on measurements in vacuum; 
solid blue and dotted black curves correspond to retrieved and original images respectively 

Similar technique can be applied to recover the intensity distribution in the focal spot of the 
hypergrating. Corresponding simulations are illustrated in Fig.10.  

To summarize, we have  

• theoretically developed and experimentally demonstrated frequency-dispersion compensation 
in LWIR metamaterials [10],  

• incorporated QC systems into metamaterials with aim to demonstrate first electrically-pumped 
active metamaterial 

• developed theoretical formalism for creation of sub-wavelength focal spots with anisotropic 
metamaterials [12], and a new technique for subwavelength far-field imaging [16, 17]  

Our research revealed a great potential of semiconductor metamaterials for subwavelength imaging and 
focusing.  



Page | 10  
 

References 
[1]. V. G. Veselago,The electrodynamics of substances with simultaneously negative values of 𝜖 and 𝜇, 

Sov. Phys. Uspekhi 10, pp. 509-514 (1968);  

[2]. J.B. Pendry "Negative refraction makes a perfect lens" Phys.Rev.Lett, 85, 3966 (2000); J.B.Pendry 
and D.R. Smith, Reversing light with negative refraction, Physics Today, 57 (6), p.37 (2004);  

[3]. V. M. Shalaev, "Optical negative-index metamaterials,'' Nat. Phot.1, 41-48 (2007);  

[4]. N.Fung, H. Lee, C. Sun, X.Zhang, Sub-diffraction-limited optical imaging with a silver superlens, 
Science 308, 534 (2005); A. Salandrino and N. Engheta, ``Far-field subdiffraction optical microscopy 
using metamaterial crystals: theory and simulations,'' Phys. Rev. B 74, 075103 (2006); I.I. 
Smolyaninov, Y.J. Hung, C.C. Davis, Science 315, 1699 (2007)  

[5]. A.Alu, N. Engheta, "Light squeezing through arbitrarily shaped plasmonic channels and sharp 
bends", Phys.Rev.B, 78, 035440 (2008) 

[6]. A. J. Hoffman, L. Alekseyev, S.S. Howard, K.J. Franz, D. Wasserman, V.A. Podolskiy, E.E. Narimanov, 
D.L. Sivco, C. Gmachl "Negative refraction in semiconductor metamaterials" – Nature Materials 6, 
946  (2007) 

[7]. A. J. Hoffman, L. Alekseyev, A. Sridhar, P.X. Braun, S. S. Howard, D.L. Sivco, V.A. Podolskiy, E.E. 
Narimanov, C. Gmachl "Mid-infrared Semiconductor Optical Metamaterials", J. Appl. Phys. 105, 
122411 (2009) 

[8]. A.J. Hoffman, V.A. Podolskiy, D.L. Sivco, C. Gmachl "Sub-diffraciton negative and positive index 
modes in mid-infrared waveguides" - Optics Express 16, 16404 (2008) 

[9]. V.G. Veselago, E.E. Narimanov, ``The left hand of brightness: past, present, and future of negative 
index materials'', Nat. Mat. 5, 759 (2006) 

[10]. M. Escarra, S. Thongrattanasiri, A. Hoffman, J. Chen, W. Charles, K. Conover, V. Podolskiy, and C. 
Gmachl, “Broadband, low-dispersion mid-infrared metamaterials”, CLEO/QELS proceedings (2010); 
full manuscript in preparation. 

[11]. M. Born and E. Wolf, "Principles of Optics" (Cambridge U. Press, 1999). 

[12]. S. Thongrattanasiri, V.A. Podolskiy “Hyper-gratings: nanophotonics in planar anisotropic 
metamaterials”, Opt.Lett. 34, 890 (2009) 

[13]. R. Heintzmann and C. Cremer, SPIE 3568, 185 (1998); M. G. L. Gustafsson, J. Micro. Oxford 198, 82 
(2000) 

[14]. S. Durant, Z. W. Liu, J. A. Steele, and X. Zhang, J. Opt. Soc. Am. B 23, 2383 (2006) 

[15]. W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes in FORTRAN77 
(Cambridge U. Press, 1992) 

[16]. S. Thongrattanasiri, N.A. Kuhta, M.D. Escarra, A.J. Hoffman, C.F. Gmachl, and V.A. Podolskiy, 
“Analytical technique for subwavelength far field imaging” Proceedings CLEO/QELS 2010. 

[17]. S. Thongrattanasiri, N.A. Kuhta, M.D. Escarra, A.J. Hoffman, C.F. Gmachl, and V.A. Podolskiy, 
“Analytical technique for subwavelength far field imaging,” Applied Physics Letters, Vol. 97, 
101103 (2010). Applied Physics Letters Top 20 Most Downloaded Article, September 2010. 

 



Quasi-planar optics: computing light propagation
and scattering in planar waveguide arrays

Sukosin Thongrattanasiri, Justin Elser, and Viktor A. Podolskiy*

Department of Physics, 301 Weniger Hall, Oregon State University, Corvallis Oregon 97331, USA
*Corresponding author: viktor.podolskiy@physics.oregonstate.edu

Received August 3, 2009; accepted August 30, 2009;
posted September 16, 2009 (Doc. ID 115087); published October 16, 2009

We analyze wave propagation in coupled planar waveguides, pointing specific attention to modal cross-talk and
out-of-plane scattering in quasi-planar photonics. An algorithm capable of accurate numerical computation of
wave coupling in arrays of planar structures is developed and illustrated on several examples of plasmonic and
volumetric waveguides. An analytical approach to reduce or completely eliminate scattering and modal cross-
talk in planar waveguides with anisotropic materials is also presented. © 2009 Optical Society of America

OCIS codes: 050.1755, 160.3918, 240.6690, 230.7390.

1. INTRODUCTION
On-chip communications, surface plasmon optics, and Si
photonics are all examples of planar optics, where the op-
tical radiation is controllably guided on the plane of a
photonic chip. A number of planar optical elements in-
cluding lenses, mirrors, and on-chip waveguides—both
plasmonic and dielectric—have been recently designed,
fabricated, and characterized [1–12]. However, with a few
exceptions [11,13,14], the majority of recent studies fo-
cuses on in-plane propagation of light and neglects out-of-
plane scattering of radiation. In this work we analyze the
out-of-plane light scattering and modal cross-talk due to
effective index change inside planar waveguides and dem-
onstrate that this scattering may substantially affect the
propagation of confined modes in complex planar systems.
We design a numerical approach to solve the problem of
scattering and modal cross-talk in planar or quasi-planar
structures that contain anisotropic elements, and present
the technique to reduce or completely eliminate the
scattering and cross-talk with anisotropic meta-
materials [15].

The problem of out-of-plane scattering has been of con-
sistent interest to the photonics community. Although a
number of finite-difference and finite-elements tech-
niques, available today, can successfully solve the prob-
lem of scattering in relatively small geometries (�10 �0,
with �0 being free-space wavelength), analysis of wave
propagation in an extended system is beyond the capabili-
ties of methods that rely on finite-size meshing of space/
time. One of the ways to reduce memory requirements to
calculate the field in an extended structure with a moder-
ate number of scattering interfaces is to implement some
sort of wave-matching technique where the modal spec-
trum is constructed to satisfy the solutions of Maxwell’s
equations in the space, and only boundary conditions
at scattering interfaces are enforced, resulting in
calculations of amplitudes of the modes. Effec-
tively, modal expansion can replace the need to calculate
all field components at every point of space with the

need to calculate modal amplitudes in every region of
space.

One of the first descriptions of the wave-matching ap-
proach and its applications for highly conductive plas-
monic guides can be found in [13,16]. Reference [13] also
describes scattering by planar guides with highly sym-
metric cross-sections. Green’s function formalism has
been utilized to analyze out-of-plane scattering of plas-
monic guides in [17]. An approach to calculate the modal
cross-talk and scattering in 1D guides was developed in
[18]. Scattering by periodically corrugated systems has
been analyzed with rigorous coupled wave analysis
(RCWA) in [19]. Recently, the generalization of field ex-
pansion to calculate scattering in plasmonic planar
guides has been presented in [14]. However, while the
mode-matching calculations were proven to be highly ef-
ficient, this technique had failed in the proximity to plas-
mon resonance condition, when the field of a surface wave
is highly confined to the proximity of a metal interface.
Here we present a wave-matching technique that is ca-
pable of solving for wave scattering in complex systems
formed by coupled planar waveguides.

The rest of the manuscript is organized as follows. In
Section 2, we present the mode structure of an arbitrary
planar guide used in this work (Fig. 1). Section 3 is de-
voted to the development of a mode-matching technique
in a quasi-planar system comprising a uniform in
y-direction array of planar guides. The presented numeri-
cal approach is illustrated on examples of light propaga-
tion in several plasmonic and metamaterial systems in
Section 4. Finally, Section 5 develops the formalism of
truly planar photonics where out-of-plane scattering and
modal cross-talk are not possible and presents an ap-
proach to design extremely low-scattering plasmonic cir-
cuits.

Notations. In this work we use the following notations
for the electric and magnetic fields in the system: the total
electric �E� and magnetic �H� fields are shown in italic let-
ters; the fields of modal components contributing to the
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total field are represented with symbols E and H; the com-
ponents of an individual mode in a particular layer of the
multilayer stack are represented with calligraphic sym-
bols E and H.

2. MODAL SPECTRUM OF PLANAR GUIDES
We start from analysis of a modal spectrum of a planar
waveguide, schematically shown in Fig. 1(a). The struc-
ture comprises a set of N planar layers with layer inter-
faces parallel to the yz plane, with the jth layer occupying
the space between xj−1�x�xj, and having (uniaxial) di-
electric permittivity described by a diagonal tensor with

diagonal components �̂j= ��j
xx ,�j

yz ,�j
yz�. We assume that x0

=−� and xN=�. In this section we consider the structure
that is infinitely extended in the yz plane.

The electromagnetic fields in this layered system can
be represented as a set of transverse-electric (TE) and
transverse-magnetic (TM) polarized waves (modes). Each
mode of the multilayer constitutes a solution of Maxwell’s
equations that is finite for −��x�� [20]. In a homoge-
neous layered structure, the mode can be parameterized
by a combination of (i) its polarization (TE/TM), (ii) the in-
plane components of the wavevector �ky ,kz�, and (iii) a set
of layer-specific complex coefficients �aj

±� playing the role
of amplitudes of the mode components:

E� �ky,kz� =�
a1

+E�1�kx;1�ky,kz�,ky,kz� + a1
−E�1�− kx;1�ky,kz�,ky,kz�, x � x1

. . .

aj
+E� j�kx;j�ky,kz�,ky,kz� + aj

−E� j�− kx;j�ky,kz�,ky,kz�, xj−1 � x � xj

. . .

aN
+ E�N�kx;N�ky,kz�,ky,kz� + aN

− E�N�− kx;N�ky,kz�,ky,kz�, xN−1 � x
� �1�

H� �ky,kz� =�
a1

+H� 1�kx;1�ky,kz�,ky,kz� + a1
−H� 1�− kx;1�ky,kz�,ky,kz�, x � x1

. . .

aj
+H� j�kx;j�ky,kz�,ky,kz� + aj

−H� j�− kx;j�ky,kz�,ky,kz�, xj−1 � x � xj

. . .

aN
+ H� N�kx;N�ky,kz�,ky,kz� + aN

− H� N�− kx;N�ky,kz�,ky,kz�, xN−1 � x
� �2�

where the fields and dispersion relations in each layer are described by

TE − polarized waves: �
E� j =

e−i�t+ik� ·r�

�ky
2 + kz

2
�0, kz, − ky�

H� j =
e−i�t+ik� ·r�c

��ky
2 + kz

2
�− �ky

2 + kz
2�, kx;jky, kx;jkz�

kx;j
2 + ky

2 + kz
2

�j
yz =

�2

c2

� �3�

Fig. 1. (Color online) Schematic geometry of the multilayered structures and electromagnetic mode types used in the manuscript. Ge-
ometry of the single multilayer stack is shown in (a); panel (b) explains the composition of top, bottom, and guided modes; field profiles
in the outside layers of the multilayer are shown; the interface between two multilayer stacks is shown in (c).
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TM − polarized waves: �
E� j =

e−i�t+ik� ·r�

ky
2 + kz

2 	ky
2 + kz

2, −
�j

xxkx;jky

�j
yz , −

�j
xxkx;jkz

�j
yz 


H� j =
e−i�t+ik� ·r��

�ky
2 + kz

2�c
�0, �j

xxkz, − �j
xxky�

kx;j
2

�j
yz +

ky
2 + kz

2

�j
xx =

�2

c2

�. �4�

Note that for a given mode only two of the amplitudes aj
±

are independent of each other. Indeed, the remaining am-
plitudes can be calculated using the well-known transfer
matrix method [20]:

�aj+1
−

aj+1
+ � = 	j �1 + Kj�
j

− �1 − Kj�
j
+

�1 − Kj�/
j
+ �1 + Kj�/
j

−��aj
−

aj
+� , �5�

with polarization-dependent parameters 
j, 	j, and Kj
given by 
j

±=exp�i�kx;j+1±kx;j�xj�, 	j
TE=1/2, 	j

TM

=�j
xx / �2�j+1

xx �, Kj
TE=kx;j /kx;j+1, Kj

TM=kx;j�j+1
yz / �kx;j+1�j

yz�.
For multilayer systems, layer-specific transfer matrices

can be multiplied together, yielding the transfer-matrix
relating the fields in any two layers of the multilayer
stack, and thus solving the problem of reflection and
transmission of a plane wave by the multilayer composite.
The singular solution that corresponds to nonzero scat-
tered waves on both sides of the multilayer structure
�a1

−,aN
+ �0� with zero incident fields �a1

+=aN
− =0� corre-

sponds to the eigen (guided) mode of the stack [20].
For each polarization, full spectrum of modes sup-

ported by the stack includes three groups of waves [see
Fig. 1(b)]. The first group contains a discrete spectrum of
guided modes, exponentially decaying into first and last
layers (a1

+=aN
− =0, a1

−=1). Here we characterize these
waves by the in-plane components of their wavevectors
�ky ,kz�.

The remaining groups of modes contain the continuum
of waves, known as open-waveguide modes [13,14] (bulk
modes). The first of these groups represents the modes
originated by a plane wave that is incident on the layered
structure from the top layer (a1

+=0, aN
− =1), while the sec-

ond group represents the wave incident on the structure
from the bottom layer (a1

+=1, aN
− =0). Here, the modes of

the first group (“top modes”) are parameterized by the
real-valued kx;N in the top �Nth� layer, while the “bottom
modes” are parameterized by the real-valued kx;1 in the
bottom (1st) layer.

In the limit of symmetric distribution of permittivity
�̂�x�= �̂�−x�, the spectrum of top and bottom modes pro-
posed here is equivalent to the earlier proposed [13] com-
binations of “standing wave” modes with symmetric and
antisymmetric x-profiles. However, in contrast to the lat-
ter, the combination of top and bottom modes is more eas-
ily generalizable to the case of nonsymmetric (such as
plasmonic) planar guides. Note that in a majority of pre-
vious studies of plasmonic structures [14], bottom modes
were explicitly omitted. As explained below, this omission
becomes crucial in the regime of strong surface plasmon

polariton (SPP) scattering, e.g., in proximity to SPP reso-
nance or in plasmonic step geometry (Fig. 3).

Overall, the field inside the guiding structure can be
written as

E� = �
q

�A�q�+
E� �ky,kz

�q�� + A�q�−
E� �ky,− kz

�q���

+�
0

�

�Atop+
�kx�E� �ky,kz�kx;N�� + Atop−

�kx�E� �ky,− kz�kx;N��

+ Abtm+
�kx�E� �ky,kz�kx;1�� + Abtm−

�kx�E� �ky,− kz�kx;1���dkx,

H� = �
q

�A�q�+
H� �ky,kz

�q�� + A�q�−
H� �ky,− kz

�q���

+�
0

�

�Atop+
�kx�H� �ky,kz�kx;N�� + Atop−

�kx�H� �ky,− kz�kx;N��

+ Abtm+
�kx�H� �ky,kz�kx;1��

+ Abtm−
�kx�H� �ky,− kz�kx;1���dkx. �6�

Here we assume that all the modes in the layered ma-
terial have the same value of ky. This assumption does not
limit the applicability of the developed technique, since
due to translational symmetry, any solution of Maxwell’s
equations in the set of coupled waveguides can be repre-
sented as a linear combination of solutions corresponding
to a set of ky values. Likewise, we assume that excitation
and response of the system are monochromatic �E ,H
�exp�−i�t��. The linearity of Maxwell’s equations makes
it possible to generalize the developed formalism for the
arbitrary pulse excitation by representing the incident ra-
diation by linear combination of monochromatic waves.

Note that in the process of calculating the waveguide
modes, it may be necessary to determine the proper sign
of the kx (or kz) component of the wavevector in a particu-
lar layer. If the component of the wavevector has complex
value, this sign is determined from the requirement for
the mode to be finite in its domain. If the wavevector com-
ponent is real, its sign should be determined to impose
the propagation of energy in the positive x (or z) direction
[21].

The set of waveguide modes defined above allows the
introduction of the scalar product

�E� 1�H� 2
†� =�

−�

�

�E� 1 � H� 2
†� · ẑdx, �7�

where the dagger (†) corresponds to the adjoined field, i.e.,
field of the mode propagating in the reversed z direction
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[13,18]. It can be shown [13,14,18] that in a given
multilayer (i) all TM-polarized waves are orthogonal to all
TE-polarized waves, (ii) the guided modes are orthogonal
to each other, and (iii) the top and bottom modes may
have some coupling, depending on �̂1 and �̂N: if �̂1= �̂N, the
top and bottom modes corresponding to the same value of
kx are coupled to each other and are orthogonal to all
other modes; if one of the two materials is lossy (as is usu-
ally the case with plasmonic structures), the top and bot-
tom modes are, as a rule, orthogonal to each other.

Note that, similar to what has been suggested in [14],
the scalar product can be calculated analytically, signifi-
cantly speeding up the calculation.

3. MODE COUPLING ACROSS MULTILAYER
STACKS
A. General Formalism
We now turn to the main point of this work—discussion of
coupling of the modes at the boundary between the two
multilayer structures. For simplicity, we present results
for the case when the interface is located at z=0 [Fig.
1(c)]. Generalization of the technique for other locations of
the interface is straightforward.

We are solving the classical scattering problem: finding
the fields scattered by the interface provided that the in-
cident fields are known. The incident fields are repre-
sented by the modes propagating in the +z direction on
the left-hand side of the interface �z�0� and by the modes
travelling in the −z direction on the right-hand side of the
interface �z0�; the scattered fields are represented by
the modes travelling in the −z direction on the left-hand
side of the interface and by the modes travelling in the +z
direction on the right-hand side of the interface. The
modal representation [Eqs. (6)] reduces the scattering
problem to an arithmetic task of finding the coefficients
AL

− and AR
+ as a function of AL

+ and AR
− , which can be solved

by imposing the following set of boundary conditions:

ELx
= ERx

; HLy
= HRy

,

ELy
= ERy

; HLx
= HRx

. �8�

As can be explicitly verified, the remaining boundary con-
ditions follow from Eqs. (8).

In the case of normal incidence �ky=0�, TM- and TE-
modes do not couple to each other. Correspondingly, in
this case the first two boundary conditions in Eqs. (8) de-
scribe the reflection, transmission, and scattering of TM-
polarized waves, while the remaining two conditions de-
scribe the optical properties of TE-polarized modes.

In order to solve the scattering problem, Eqs. (8) need
to be converted into the set of coupled linear equations for
the amplitudes of the scattered modes. To achieve this
goal, we substitute the modal expansion [Eqs. (6)] in Eqs.
(8), and subsequently multiply the resulting expressions
by the adjoined fields of left- and right-hand side modes,
as illustrated below.

B. Numerical Implementation of the Algorithm
In numerical simulations, it is necessary to replace the
continuous integration over kx with finite sums. Thus,
Eqs. (6) becomes

E� = �
m

�A�m�+
E� �m�+

+ A�m�−
E� �m�−

�w�m�,

H� = �
m

�A�m�+
H� �m�+

+ A�m�−
H� �m�−

�w�m�, �9�

where E� �m�±�E� �ky , ±kz
�m��, and similar for H� ; the summa-

tion in Eqs. (9) goes over all modes (guided, top, and bot-
tom), and the weight factors w are equal to 1 for the
guided modes, and are determined by the integration
method used for top and bottom modes [22]. Note that the
number of modes on the left-hand side of the interface
does not necessarily equal to the number of modes on the
right-hand side of the interface.

Equations (8) now become

�
m=1

NL

�AL
�m�+

ELx

�m�+
+ AL

�m�−
ELx

�m�−
�wL

�m�

= �
m=1

NR

�AR
�m�+

ERx

�m�+
+ AR

�m�−
ERx

�m�−
�wR

�m�,

�
m=1

NL

�AL
�m�+

HLy

�m�+
+ AL

�m�−
HLy

�m�−
�wL

�m�

= �
m=1

NR

�AR
�m�+

HRy

�m�+
+ AR

�m�−
HRy

�m�−
�wR

�m�,

�
m=1

NL

�AL
�m�+

ELy

�m�+
+ AL

�m�−
ELy

�m�−
�wL

�m�

= �
m=1

NR

�AR
�m�+

ERy

�m�+
+ AR

�m�−
ERy

�m�−
�wR

�m�,

�
m=1

NL

�AL
�m�+

HLx

�m�+
+ AL

�m�−
HLx

�m�−
�wL

�m�

= �
m=1

NR

�AR
�m�+

HRx

�m�+
+ AR

�m�−
HRx

�m�−
�wR

�m�. �10�

To solve for NR+NL unknown amplitudes, we multiply
first two equations in Eqs. (10) by the fields of TM-
polarized modes and integrate the resulting products over
x; similarly, we multiply the two latter equations by the
fields of TE-polarized modes and perform the integration.
Assuming that the index m first spans the TE-polarized
and then TM-polarized waves, the procedure results in
the following two sets of matrix equations:

ERL
+̂ mnAL

�m�+
+ ERL

−̂ mnAL
�m�−

= ERR
+̂ mnAR

�m�+
+ ERR

−̂ mnAR
�m�−

,

HRL
+̂ mnAL

�m�+
+ HRL

−̂ mnAL
�m�−

= HRR
+̂ mnAR

�m�+
+ HRR

−̂ mnAR
�m�−

,

�11�

and
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ELL
+̂ mnAL

�m�+
+ ELL

−̂ mnAL
�m�−

= ELR
+̂ mnAR

�m�+
+ ELR

−̂ mnAR
�m�−

,

HLL
+̂ mnAL

�m�+
+ HLL

−̂ mnAL
�m�−

= HLR
+̂ mnAR

�m�+
+ HLR

−̂ mnAR
�m�−

,

�12�

where the summation over repeated index m is assumed
and matrix elements are given by

ER�L�R�
±mn

= w�L�R�
�m� ��−�

�

E�L�R�y

�m�±
HRx

�n�−
dx, n � NR

TE

�
−�

�

E�L�R�x

�m�±
HRy

�n�−
dx, n  NR

TE� ,

HR�L�R�
±mn

= w�L�R�
�m� ��−�

�

H�L�R�x

�m�±
ERy

�n�−
dx, n � NR

TE

�
−�

�

H�L�R�y

�m�±
ERx

�n�−
dx, n  NR

TE� ,

EL�L�R�
±mn

= w�L�R�
�m� ��−�

�

E�L�R�y

�m�±
HLx

�n�−
dx, n � NR

TE

�
−�

�

E�L�R�x

�m�±
HLy

�n�−
dx, n  NR

TE� ,

HL�L�R�
±mn

= w�L�R�
�m� ��−�

�

H�L�R�x

�m�±
ELy

�n�−
dx, n � NR

TE

�
−�

�

H�L�R�y

�m�±
ELx

�n�−
dx, n  NR

TE�.. �13�

Note that the modes of z�0 region are not necessarily or-
thogonal to the modes in the z0 region. Thus, the ma-
trices ERL

±̂ ,HRL
±̂ ,ELR

±̂ , HLR
±̂ may have substantial nondiago-

nal components describing cross-talk of the modes across
the interface.

In fact, the above matrices are square and invertible
only when NL=NR, in which case one of Eqs. (11) and (12)
can provide the information required to solve the scatter-
ing problem. However, even in this case, inversion proce-
dure may lead to significant numerical problems and is
undesirable. When NL�NR these matrices are rectangu-
lar and thus, even theoretically, cannot be inverted. To
overcome this difficulty, we reduce Eqs. (11) and (12) to
the following set of equations that represent the generali-
zation of transfer-matrix formalism for coupled wave-
guide structures:

�A� R
−

=R11
̂A� L

− + R12
̂A� L

+

A� R
+ =R21

̂A� L
− + R22

̂A� L
+� ,

	A� L
− =L11

̂A� R
− + L12

̂A� R
+

A� L
+ =L21

̂A� R
− + L22

̂A� R
+
 , �14�

where A� �L�R�
± ��A�L�R�

�1�± , . . . ,A�L�R�
�N�L�R��

±
� and

�
R11
̂ = �ERR

+̂ −1ERR
−̂ − HRR

+̂ −1HRR
−̂ �−1�ERR

+̂ −1ERL
−̂ − HRR

+̂ −1HRL
−̂ �

R12
̂ = �ERR

+̂ −1ERR
−̂ − HRR

+̂ −1HRR
−̂ �−1�ERR

+̂ −1ERL
+̂ − HRR

+̂ −1HRL
+̂ �

R21
̂ = �ERR

−̂ −1ERR
+̂ − HRR

−̂ −1HRR
+̂ �−1�ERR

−̂ −1ERL
−̂ − HRR

−̂ −1HRL
−̂ �

R22
̂ = �ERR

−̂ −1ERR
+̂ − HRR

−̂ −1HRR
+̂ �−1�ERR

−̂ −1ERL
+̂ − HRR

−̂ −1HRL
+̂ �
� ,

�15�

�
L11
̂ = �ELL

+̂ −1ELL
−̂ − HLL

+̂ −1HLL
−̂ �−1�ELL

+̂ −1ELR
−̂ − HLL

+̂ −1HLR
−̂ �

L12
̂ = �ELL

+̂ −1ELL
−̂ − HLL

+̂ −1HLL
−̂ �−1�ELL

+̂ −1ELR
+̂ − HLL

+̂ −1HLR
+̂ �

L21
̂ = �ELL

−̂ −1ELL
+̂ − HLL

−̂ −1HLL
+̂ �−1�ELL

−̂ −1ELR
−̂ − HLL

−̂ −1HLR
−̂ �

L22
̂ = �ELL

−̂ −1ELL
+̂ − HLL

−̂ −1HLL
+̂ �−1�ELL

−̂ −1ELR
+̂ − HLL

−̂ −1HLR
+̂ �
�.

�16�

Finally, we combine Eqs. (14) and arrive to the generali-
zation of the scattering-matrix technique that solves the
problem of interlayer coupling:

	A� L
− = �Î − L12

̂R21
̂�−1L11

̂ A� R
− + �Î − L12

̂R21
̂�−1L12

̂R22
̂ A� L

+

A� R
+ = �Î − R21

̂L12
̂�−1R21

̂L11
̂ A� R

− + �Î − R21
̂L12

̂�−1R22
̂ A� L

+
 ,,

�17�

with Î being identity matrices. Equations (17) represent
the main result of this work.

Before illustrating the accuracy of the developed ap-
proach, we would like to underline its main advantages
and disadvantages. The approach is ideal for calculation
of light propagation in extended structures with a rela-
tively small number of multilayer segments; the increase
in the number of segments results in additional memory
use for each given segment and, correspondingly, mini-
mizes the advantages of a wave-matching approach over
finite-difference and finite-element schemes.

The developed technique provides an efficient solution
of the problem of coupling the multilayers with high index
contrast (high optical mode density difference) by imple-
menting a multilayer-dependent number of modes. How-
ever, our calculations show that careful design of the spec-
trum of the open-waveguide modes is necessary when the
coupling to and from the highly confined modes is calcu-
lated.

For guided modes, the approach allows straightforward
calculation of intermode cross-talk by calculating the
mode-specific pointing-flux and multiplying it by the am-
plitude of the given mode squared; similarly, the approach
allows for easy calculation of emission directionality,
naturally separating the fields produced by guided modes
from the fields of open-waveguide modes and separating
the fields of the incident waves from the fields of the scat-
tered waves.

4. INTERGUIDE COUPLING IN PLASMONIC
AND METAMATERIAL SYSTEMS
We now illustrate the accuracy of the presented approach
on several examples of plasmonic and metamaterial sys-
tems.
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A. Light Emission and Scattering by Single-Mode
Waveguide
We first consider light coupling to and from the wave-
guide. As an example, we use a 600-nm-thick Si wave-
guide surrounded by air, and calculate the coupling be-
tween this system and a homogeneous dielectric at �0
=1.5 �m; �Si=12.12 [23].

To analyze the accuracy of our technique we assume
that the system is excited by the TM2 mode with ampli-
tude of 1, and study the percentage of the reflected light
into TM0, TM1, and TM2 modes as a function of dielectric
permittivity of the homogeneous dielectric [see inset in
Fig. 2(a)]. For comparison, we have calculated the same
parameters with commercial finite-element-method
(FEM) software [24]. The perfect agreement between the
results of our technique and FEM simulations is shown in
Fig. 2. As expected, even for this relatively simple system,
the scattering-matrix approach uses orders-of-magnitude
less memory than the FEM model. More importantly,
scattering-matrix formalism is easily extendable to the
case of multiple guides or multiple interfaces.

The field matching obtained with our technique for �D
=12.12 are illustrated in Fig. 2(c). Panel (d) of the same
figure illustrates the matching obtained in coupling be-
tween an air–Si–air guide and an anisotropic hyperbolic
metamaterial with �D

xx=3.6+0.05i, �D
yz=−12.2+1.36i

[25–36].

B. Light Scattering in Plasmonic Systems
To further analyze the accuracy and limitations of the de-
veloped field-matching technique, we have calculated the
scattering from the plasmonic analog of the Si guide pre-
sented above: a 600-nm-thick plasmonic gap waveguide
operating at �0=0.6 �m. We assume that cladding of this
guide is composed from two gold plates with �Au=−8.94

+1.32i [23]. The agreement between the mode matching
and FEM calculations of modal reflectivity in plasmonic
gap guides is shown is Fig. 2(b).

We have further simulated the propagation of plas-
monic modes across surface structure defects. In particu-
lar, we have used our approach to simulate the SPP
propagation in “plasmonic step” geometry (Fig. 3). As ex-
pected, when the incoming SPP is travelling on the upper
side of the plasmonic step, most of the incident energy is
converted into free-space modes. In contrast, when the in-
cident SPP is travelling on the lower side of the step, the
majority of energy is converted into the reflected SPP
wave.

Our numerical simulations demonstrate that at
near-IR frequencies (when ��m���d), the scattered field
can be successfully decomposed into “top” open waveguide
modes, as suggested in [14]. However, in the proximity of
SPP resonance ��m�−�d�, the inclusion of the “bottom”
modes is necessary to adequately describe the optical
properties of the system.

Note that the results of wave-matching simulations are
almost identical to those obtained with FEM. Once again,
we underline that the wave-matching technique allows
for calculation of light propagation in much larger sys-
tems than the FEM system does.

To assess the convergence of our method, we have per-
formed a set of simulations for each SPP structure de-
scribed above, varying the configuration of spectra of top
and bottom modes (for simplicity, equidistant kx spectra
between 500 and 3000 modes were used). As expected, our
simulations showed that it is necessary to design the
spectrum of bulk modes to adequately resolve the SPP
propagating at the z=0 interface. Interestingly, the “aver-
aged” parameters (such as amplitudes of reflected guided
modes) are much more sensitive to spectrum variations
than the matching of the boundary conditions at z=0 in-
terface, which is often considered to be an indication of ac-
curacy of a numerical method. The typical inter-set varia-

Fig. 2. (Color online) (a) Light reflection in the planar air–Si–
air waveguide coupled to a homogeneous dielectric; �0=1.5 �m,
waveguide thickness d=0.6 �m; the geometry and profiles of the
waveguide modes supported by the system are shown in the in-
set; excitation by TM2 mode is assumed; the graph shows the
comparison between the technique presented here (lines) and
FEM simulations (dots); R2=0 since the symmetry of TM1 mode
is different from that of TM0 and TM2 modes. (b) Reflection in
plasmonic gap (Au–Air–Au) waveguide; �0=d=0.6 �m; thickness
of lines illustrates the convergence of the computations. Panels
(c) and (d) illustrate the field distributions in the system (a) with
�D=12.12 (c) and �D

xx=3.6+0.05i, �D
yz=−12.2+1.36i (d).

Fig. 3. (Color online) Scattering of the SPP propagating across
the Au–Air step; panels (a) and (b) show transmission, reflection,
and scattering �S=1−R−T� of an SPP that is incident on the
step; geometry of the structures is shown in insets; lines corre-
spond to the formalism developed in this work (line thickness
represents data variation due to changes in spectra of bulk
modes); dots represent results from FEM simulations; panels (c)
and (d) illustrate the field distributions obtained from scattering-
matrix (c) and FEM (d) simulations for d=0.7 �m.
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tion of reflection, transmission, and scattering are
illustrated in Figs. 2 and 3. The latter figure also shows
the agreement between the field distribution obtained
with our generalized scattering-matrix formalism and
with FEM.

5. TRULY PLANAR OPTICS
We now turn to the analysis of intermode coupling and
out-of-mode scattering in planar optics. Planar optics, in
general (and SPP optics in particular), are fundamentally
different from their free-space counterparts. Thus, when
a plane wave is incident on the planar interface, the scat-
tered field can be decomposed into one reflected plane
wave and one transmitted plane wave. In contrast to this
behavior, when one guided mode is incident on the planar
interface between two waveguides, it generates a con-
tinuum of open-waveguide modes in addition to the (sets
of) reflected and transmitted guided waves.

As seen from Figs. 4 and 5 and from [14], the typical
interface between waveguide systems leads to scattering
of about 20% of incident radiation. Every attempt to
change the effective index of the mode in planar struc-
tures is necessarily accompanied by modal cross-talk or
by out-of-plane scattering of radiation.

It is possible, however, to utilize anisotropic metamate-
rials to completely eliminate the cross-talk, and to map
the familiar laws of 3D optics to optics of planar guides.
The main idea of planar optics lies in the ability to guide
light along the planar optical circuit with no out-of-plane
scattering or modal cross-talk. In this section we assume
that the layers on both sides of the interface are aligned
with each other �xL,j=xR,j�.

In order to realize the efficient control over pulse propa-
gation in the plane, the two layered structures must

(i) have the same number of guided modes, and (ii) pro-
vide the ability to independently control the index of the
mode [crucial for steering the light] and modal profile
[crucial for optimizing the overlap integrals involved in Ê

and Ĥ matrices].
As shown in [15] on the example of surface waves,

these conditions can be satisfied when

�Lj

yz = �Rj

yz ,

n2�Lj

xx = �Rj

xx, �18�

with n being the constant number that does not depend
on layer number j.

As can be explicitly verified, when Eq. (18) is satisfied,
all Ê and Ĥ matrices become diagonal. Thus, the inter-
mode coupling is absent across the interface. The inter-
face remains completely transparent to TE-polarized
waves, while reflection and refraction of TM-polarized
modes are controlled by the ratio of out-of-plane permit-
tivities. The direction and amplitudes of the reflected and
refracted modes are related to the direction and ampli-
tude of the incident modes via the following Snell’s law,

sin��i� = sin��r� = n sin��t�, �19�

and Fresnel coefficients,

AL
�m�−

AL
�m�+ =

kLz

�m� − kRz

�m�

kLz

�m� + kRz

�m�
,

AR
�m�+

AL
�m�+ =

2kLz

�m�

kLz

�m� + kRz

�m�
. �20�

The above equations represent generalization of the for-
malism of Ref. [15] to multilayered guides.

The concept of truly 2D optics is illustrated in Fig. 4 on
example of an air–Si–air system coupled to a metamate-
rials waveguide. As expected, reflection of a single mode
in a conventional planar system is accompanied not only

Fig. 4. (Color online) (a,c) An interface between an air–Si–air
waveguide and isotropic air–��=6.06�–air guide leads to substan-
tial modal cross-talk, polarization mixing, and out-of-plane scat-
tering; while the interface between air–Si–air waveguide and its
anisotropic truly planar optics analog allows for ideal mode
matching with light steering capabilities (b,d); guided modes in
(c,d) correspond to mode number 2000; the system is excited by
a TM2 guided mode propagating at the angle 30° to the z=0 in-
terface; the amplitudes of modes in panels (c,d) are normalized to
the amplitude of the incident mode.

Fig. 5. (Color online) Anisotropic coatings (b, d) can signifi-
cantly reduce (and almost eliminate) the scattering losses in
plasmonic circuits; the figure shows reflection, transmission, and
scattering in conventional plasmonic circuit (a) and in a plas-
monic system where the space x0, z0 filled with material
�yz=1, �xx=�D (b); field distribution for �D=4 (c) clearly shows
that only a fraction of the energy of incident SPP is transferred
into SPP on the right-hand side of the interface; on the other
hand, the interface between the anisotropic system with �yz=1,
�xx=4 (d) allows for substantial modulation of SPP index, and re-
sults in almost perfect SPP–SPP coupling across a z=0 interface.

B108 J. Opt. Soc. Am. B/Vol. 26, No. 12 /December 2009 Thongrattanasiri et al.



by significant radiation scattering and modal cross-talk
but also by cross-polarization coupling. In contrast, for
metamaterial guides the single-incident mode excites one
reflected wave and one transmitted wave.

Low-Scattering Plasmonics. An interesting extension of
truly planar optics is possible in plasmonic systems. From
the fabricational standpoint, it is highly desirable that
the plasmonic circuit is fabricated on top of common me-
tallic substrate.

Fabrication of an extremely low-scattering plasmonic
circuit is possible when using anisotropic dielectrics de-
posited on noble metals in the limit of visible and near-IR
frequencies, where the permittivity of metal is much
larger than the permittivity of dielectric ���m���d

xx ,�d
yz�.

Consider the situation where the in-plane �yz� compo-
nent of permittivity of a dielectric is kept constant across
a plasmonic system, and only the out-of-plane �xx� compo-
nent of permittivity of the superstrate is varied. In such a
system the propagation constant of the plasmonic mode,
approximately given by [37]

ky
2 + kz

2 � �d
xx�1 +

�d
yz

��m���2

c2 , �21�

can be effectively controlled by changing the parameter
�d

xx.
In the same limit, the exponential decay of the mode

into the dielectric [E ,H�exp�−�dx�, �d�� /c��d
yz2

/ ��m�]
does not depend on its propagation constant. The only
source of out-of-plane scattering in such a structure is re-
lated to a weak dependence of the field profile in metal
�E ,H�exp��mx�� on �d

xx: �m�� /c���m��1−�d
xx / ��m��.

As seen from Fig. 5, anisotropy of dielectric super-
strate, achievable, for example, with electrooptic effect
[37], provides orders-of-magnitude suppression of out-of-
plane scattering in plasmonic systems with respect to iso-
tropic counterparts.

6. CONCLUSIONS
To conclude, we have developed a reliable numerical tech-
nique for calculation of light propagation in planar guides
and in arrays of planar guides. We have illustrated the
developed formalism on examples of photonic, metamate-
rial, and plasmonic guides, and presented an approach to
utilize anisotropic metamaterials for minimization and
elimination of modal cross-talk in planar optical circuits.

This work was sponsored by the Office of Naval Re-
search (ONR) (grant No. N00014-07-1-0457), the National
Science Foundation (NSF) (grant ECCS-0724763), and
the U. S. Air Force Office of Scientific Research (AFOSR)
(grant FA9550-09-1-0029).

REFERENCES
1. S. I. Bozhevolnyi, V. S. Volkov, and K. Leosson,

“Localization and waveguiding of surface plasmon
polaritons in random nanostructures,” Phys. Rev. Lett. 89,
186801 (2002).

2. S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel,
B. E. Koel, and A. A. G. Requicha, “Local detection of
electromagnetic energy transport below the diffraction

limit in metal nanoparticle plasmon waveguides,” Nature
Mater. 2, 229–232 (2003).

3. I. I. Smolyaninov, J. Elliot, A. V. Zayats, and C. C. Davis,
“Far-field optical microscopy with a nanometer-scale
resolution based on the in-plane image magnification by
surface plasmon polaritons,” Phys. Rev. Lett. 94, 057401
(2005).

4. H. Shin and S. Fan, “All-angle negative refraction for
surface plasmon waves using a metal-dielectric-metal
structure,” Phys. Rev. Lett. 96, 073907 (2006).

5. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and
T. W. Ebbesen, “Channel plasmon subwavelength
waveguide components including interferometers and ring
resonators,” Nature 440, 508–511 (2006).

6. A. D. Boardman, Electromagnetic Surface Modes (Wiley,
1982).

7. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface
plasmon subwavelength optics,” Nature 424, 824–830
(2003).

8. M. I. Stockman, “Nanofocusing of optical energy in tapered
plasmonic waveguides,” Phys. Rev. Lett. 93, 137404 (2004).

9. R. Zia and M. L. Brongersma, “Surface plasmon polariton
analogue to Young’s double-slit experiment,” Nature
Nanotech. 2, 426–429 (2007).

10. Z. Liu, J. M. Steele, H. Lee, and X. Zhang, “Tuning the
focus of a plasmonic lens by the incident angle,” Appl.
Phys. Lett. 88, 171108 (2006).

11. I. I. Smolyaninov, D. L. Mazzoni, J. Mait, and C. C. Davis,
“Experimental study of surface-plasmon scattering by
individual surface defects,” Phys. Rev. B 56, 1601–1611
(1997).

12. Y. Vlasov, W. M. J. Green, and F. Xia, “High-throughput
silicon nanophotonic wavelength-insensitive switch for on-
chip optical networks,” Nat. Photon. 2, 242–246 (2008).

13. V. V. Schevchenko, Continuous Transitions in Open
Waveguides (Golem, 1971).

14. R. F. Oulton, D. F. P. Pile, Y. Liu, and X. Zhang, “Scattering
of surface plasmon polaritons at abrupt surface interfaces:
implications for nanoscale cavities,” Phys. Rev. B 76,
035408 (2007).

15. J. Elser and V. A. Podolskiy, “Scattering-free plasmonic
optics with anisotropic metamaterials,” Phys. Rev. Lett.
100, 066402 (2008).

16. P. J. B. Clarricoats and K. R. Slinn, “Numerical method for
the solution of waveguide-discontinuity problems,”
Electron. Lett. 2, 226–228 (1966).

17. T. Sondergaard and S. I. Bozhevolnyi, “Out-of-plane
scattering properties of long-range surface plasmon
polariton gratings,” Phys. Status Solidi B 242, 3064–3069
(2005).

18. T. Rozzi and M. Mongiardo, Open Electromagnetic
Waveguides (Inspec/IEE, 1997).

19. M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave
analysis of planar-grating diffraction,” J. Opt. Soc. Am. 71,
811–818 (1981).

20. M. Born and E. Wolf, Principles of Optics (Cambridge Univ.
Press, 1999).

21. A. A. Govyadinov, V. A. Podolskiy, and M. A. Noginov,
“Active metamaterials: sign of refractive index and gain-
assisted dispersion management,” Appl. Phys. Lett. 91,
191103 (2007).

22. W. H. Press, W. T. Wetterling, S. A. Teukolsky, and B. P.
Flannery, Numerical Recipes in Fortran 77 (Cambridge
Univ. Press, 1992).

23. E. Palik, ed., The Handbook of Optical Constants of Solids
(Academic, 1997).

24. For details see COMSOL Multiphysics User’s Guide and
RF Module User’s Guide; COMSOL (1994–2009);
www.comsol.com.

25. V. M. Shalaev, “Optical negative-index metamaterials,”
Nat. Photon. 1, 41–48 (2007).

26. R. Wangberg, J. Elser, E. E. Narimanov, and V. A.
Podolskiy, “Nonmagnetic nanocomposites for optical and
infrared negative-refractive-index media,” J. Opt. Soc. Am.
B 23, 498–505 (2006).

27. J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M.

Thongrattanasiri et al. Vol. 26, No. 12 /December 2009 /J. Opt. Soc. Am. B B109



Stacy, and X. Zhang, “Optical negative refraction in bulk
metamaterials of nanowires,” Science 321, 930 (2008).

28. C. Reinhardt, S. Passinger, B. N. Chichkov, W. Dickson, G.
A. Wurtz, P. Evans, R. Pollard, and A. V. Zayats,
“Restructuring and modification of metallic nanorod arrays
using femtosecond laser direct writing,” Appl. Phys. Lett.
89, 231117 (2006).

29. Y. F. Chen, P. Fischer, and F. W. Wise, “Negative refraction
at optical frequencies in nonmagnetic two-component
molecular media,” Phys. Rev. Lett. 95, 067402 (2005) and
Reply 98, 059702 (2007).

30. G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and
S. Linden, “Simultaneous negative phase and group
velocity of light in a metamaterial,” Science 312, 892–894
(2006).

31. Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Optical
hyperlens: far-field imaging beyond the diffraction limit,”
Opt. Express 14, 8247–8256 (2006).

32. A. Salandrino and N. Engheta, “Far-field subdiffraction

optical microscopy using metamaterial crystals: theory and
simulations,” Phys. Rev. B 74, 075103 (2006).

33. Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field
optical hyperlens magnifying sub-diffraction-limited
objects,” Science 315, 1686 (2007).

34. I. I. Smolyaninov, Y. J. Huang, and C. C. Davis,
“Magnifying superlens in the visible frequency range,”
Science 315, 1699–1701 (2007).

35. J. B. Pendry, “Negative refraction makes a perfect lens,”
Phys. Rev. Lett. 85, 3966–3969 (2000).

36. S. Thongrattanasiri and V. A. Podolskiy, “Hypergratings:
nanophotonics in planar anisotropic metamaterials,” Opt.
Lett. 34, 890–892 (2009).

37. V. A. Podolskiy and J. Elser, “Electroplasmonics: dynamical
plasmonic circuits with minimized parasitic scattering
(QTuJ2),” presented at the Conference on Lasers and
Electro-Optics (CLEO) and the International Quantum
Electronics Conference (IQEC), Washington, D.C., May
4–8, 2008.

B110 J. Opt. Soc. Am. B/Vol. 26, No. 12 /December 2009 Thongrattanasiri et al.



Broadband, Low-Dispersion, Mid-Infrared Metamaterials 
Matthew D. Escarra1, Sukosin Thongrattanasiri2, Anthony J. Hoffman1,

Jianxin Chen1,3, William O. Charles1, Viktor A. Podolskiy2, and Claire Gmachl1

1 Department of Electrical Engineering, Princeton University, Princeton, NJ 08544, USA
2 Department of Physics, Oregon State University, Corvallis, OR 97331, USA  

3 Current address: Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China 
Author e-mail address: escarra@princeton.edu 

 
Abstract: Broad-bandwidth, low-dispersion, optical metamaterials are desired. Reflection 
measurements show that, by using multiple-metamaterial semiconductor stacks of varying 
thickness and doping, bandwidth is improved by 47% over a single-stack mid-infrared 
metamaterial, and dispersion appears reduced. 
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1. Introduction 
Optical metamaterials exhibiting negative refraction have drawn considerable interest in recent years due to their 
potential for subwavelength imaging [1] and optical cloaking [2]. More generally, the synthetic nature of these 
materials provides the potential for significant engineering of their optical response, allowing great creativity in 
designing new optical materials for a multitude of applications. Recently demonstrated, all-semiconductor, mid-
infrared metamaterials show much promise due to their relative low loss, 3-D nature, and straightforward fabrication 
[3]. However, the spectral bandwidth of negative refraction for a given material and the large dispersion in this 
negative refraction spectral region currently make these materials unsuitable for applications involving wide-band 
signals, such as imaging. Here, we demonstrate that these materials can be engineered to produce a broadband, low-
dispersion optical response, by forming composite structures of multiple-metamaterial stacks. 

 
2. Material design 
The mid-infrared metamaterials used in this study are composed of interleaved 80 nm thick layers of lattice-matched 
In0.53Ga0.47As and Al0.48In0.52As. These layers are grown in a stack by molecular beam epitaxy (MBE) on a low-
doped InP substrate. The InGaAs layers are highly doped with Si atoms to create a plasma resonance of free carriers, 
while the AlInAs layers are left undoped. Conventionally, the InGaAs layers are doped at a uniform level, providing 
a single-wavelength plasma resonance [3]. In this work, we use multiple doping levels in the same structure, in order 
to broaden the region of negative refraction and to reduce dispersion in the angle of refraction. This is achieved by 
growing one metamaterial stack in a conventional manner, followed by growing another stack with different doping 
directly on top in the same growth chamber, and so forth. By accumulating multiple resonances on top of one 
another in the same structure, the optical response can be tailored. There are two variables used in designing the 
behavior of each stack: doping and stack thickness. The doping level determines the critical wavelength, �0, which is 
the spectral location of the transition from positive to negative refraction. Higher doping leads to a shorter critical 
wavelength. The thickness of the stack determines the length of interaction with the material. 

 
Fig. 1. (a) Calculation of expected lateral (in-plane) shift for light passing through a composite metamaterial consisting of 
one, two, and four conventional metamaterial stacks. (b) Measured ratio of transverse magnetic/transverse electric 
reflectance (RTM/RTE) off of the surface of these three different metamaterials at an incidence angle of 46 degrees.  

(b)(a) 
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We designed three structures in this study. The first is a baseline single-stack structure consisting of 40 periods 
of interleaved InGaAs/AlInAs layers grown on InP, with InGaAs layers doped at 10.9x1018 cm-3, for a total 
epitaxial-layer thickness of 6.4 μm. The second sample is a two-stack metamaterial, where the first stack grown on 
the InP substrate consists of 10 periods (1.6 μm thick) with InGaAs doped at 9.0x1018 cm-3, and the second stack 
grown consists of 50 periods (8 μm thick) with InGaAs doped at 10.0x1018 cm-3. The third sample is a four-stack 
metamaterial, where the first stack grown on InP contains 6 periods (0.96 μm thick) with InGaAs doped at 7.7x1018 
cm-3, the second contains 7 periods (1.12 μm thick) with InGaAs doped at 8.2x1018 cm-3, the third contains 13 
periods (2.08 μm thick) with InGaAs doped at 9.0x1018 cm-3, and the fourth contains 50 periods (8 μm thick) with 
InGaAs doped at 10.0x1018 cm-3. By using a transfer matrix method to compute the coefficients of full 
electromagnetic waves propagating through each of the stacks, the beam shift (distance light translates in the plane 
of the stacks as it passes through the sample) can be calculated versus wavelength, shown in Fig. 1(a). This reveals 
the expected bandwidth and flatness of the response in the negative refraction (negative shift) region for each 
structure. From this plot, one can see that the multi-stack metamaterials have broader and flatter negative refraction.  

3. Sample characterization 
Each of the three grown wafers was characterized through measurements of reflection off of the epitaxial-layer. The 
measurements were performed with a Fourier-transform infrared spectrometer and its internal source, along with a 
liquid nitrogen-cooled mercury-cadmium-telluride detector. Reflection measurements were taken versus angle of 
incidence of the source incident on the sample, with angles ranging from 36° to 80° in 2° increments. A polarizer 
was used to measure transverse magnetic (TM) and transverse electric (TE) reflection at each angle, all versus 
wavelength. Spectra were normalized to a background measurement. Incoming TM polarized light experiences 
negative refraction, whereas TE polarized light does not. A clear discontinuity in the Brewster angle of TM to TE 
polarized reflection is indicative of this effect. Fig. 1(b) compares spectra at an incidence angle of 46° for all three 
samples. Furthermore, in Fig. 2, one can see the TM reflection over TE reflection ratio for all angles versus 
wavelength for each of the three samples: (a) the single-stack material, (b) the two-stack material, and (c) the four-
stack material. As we see in these spectra, where the negative refraction region is within dashed lines, the multiple-
stack metamaterials have a broader bandwidth of negative refraction. The negative refraction region starts where 
there is a discontinuity in the Brewster angle (�0�7.6 μm in Fig. 2(b)) and ends where the TM/TE reflection rises 
sharply (RTM/RTE = 0.5); the single-stack has a bandwidth of 21%, the two-stack has a bandwidth of 31%, and the 
four-stack has a bandwidth of 30%, which is an increase by 47% in relative bandwidth over the single stack. In 
addition, dispersion appears to be reduced in the negative refraction region for the multiple-stack structures, where 
the Brewster angle is varying less quickly with wavelength in Figs. 2(b) and 2(c) than it is in Fig 2(a).  

 
Fig. 2. Ratio of TM over TE surface reflection (color scale) versus angle of incidence and wavelength for (a) a 
conventional single-stack mid-infrared metamaterial, (b) a broadband metamaterial consisting of two stacks, and (c) a 
broadband metamaterial consisting of four stacks. The negative refraction region is demarcated by dashed lines. 

4. Conclusions 
All-semiconductor mid-infrared metamaterials have been demonstrated with enhanced bandwidth and reduced 
dispersion. Bandwidth was increased from 21% in a conventional reference structure to 31% in a composite 
structure featuring two metamaterials stacked in succession (a 47% relative increase). Furthermore, dispersion in the 
negative refraction region appeared reduced in the composite metamaterial. The relatively simple fabrication of 
these materials allows much potential for creative manipulation of the optical response. 
This work is supported in part by AFOSR (grant #FA9550-09-1-0029). 
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Abstract: We develop a technique for determining the size of subwavelength focal spots without 
near-field microscopy, based on carefully designed gratings that convert the subwavelength 
information into propagating waves, far-field measurements, and computer post-processing. 
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Subwavelength focusing of electromagnetic waves is of interest in broad class of applications spanning all parts of 
electromagnetic spectra. Some applications of subwavelength focusing include nanoimaging, nanolithography, 
compact photonic elements, and ultra-potent sensors. Metamaterials and plasmonic systems promise to conquer the 
diffraction limit and offer numerous solutions to the problem of subwavelength imaging [1]. However, while the 
subwavelength light management in metamaterial systems may be free from diffraction limit, finite-wavelength of 
light in vacuum provides substantial challenges in experimental studies of nanophotonics. Although near-field 
measurements [2] provide a way to analyze subwavelength field distributions, these techniques suffer from 
nontrivial convolution of the field pattern with tip function. Moreover, near-field microscopy is generally not 
available at IR and THz parts of the spectrum. Here we present a technique that can be used to determine the 
resolution of subwavelength focusing systems with far-field measurements. 
 The technique relies on carefully designed grating to convert the information about subwavelength features into 
the propagating waves, similar to the technique proposed in [3]. However, in contrast to [3], our technique does not 
rely on resonant enhancement of subwavelength information with plasmonic structures. We illustrate the developed 
formalism on the example of restoration of subwavelength focal spot of the anisotropy-based planar focusing 
structure – hypergrating [4], and present generalization for reconstructing any unknown subwavelength images [5]. 

The fundamental difference between the diffraction-limited and subwavelength images is seen in the wavevector 
space. The spectrum of the subwavelength focal spot is dominated by high-wavenumber components that 
exponentially decay away from the focal spot. The grating, that plays the role of image-reconstructing structure, 
located at the image plane [Fig. 1(a)], converts the evanescent waves into the propagating waves as described [6] by 
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where  is the incident field wavevector, � is the diffraction order, �  is the grating 
wavevector parallel to itself, � is the grating period, and �� is the diffracted wavevector. The general design concept 
that governs the design of the grating is to suppress all but � �  modes and shift the evanescent signals into the 
propagating regime. This one-to-one wavevector relation makes imaging retrieval possible. 
 

 

Fig.1. (a) schematic of the image reconstruction system; the grating is located at the image plane, the measurement is done at the distance �  from 
the grating; (b) spectrum distribution of hypergratings with positive refraction (� ) at the focal point composed of only 
subwavelength information (� �); (c) the range of high wavevector waves are shifted into the interval of low wavevector waves 
(����
	� � �� !") with � �  diffraction modes; the length of arrows corresponds to � ; �� ��
	

�� � �� �� � � 

 The spectrum distribution of hypergratings with positive refraction metamaterial (� ) [4,7] is 
shown in Fig. 1(b). Note that this kind of material only allows the propagation of p-polarized waves. In this work, 
we let � axis be the propagating direction perpendicular to the alignment of the grating and # and $ axes be the 
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direction parallel to the grating. With this metamaterial, the subwavelength signal occupies only high wavevector 
information which is immeasurable in far-field vacuum. However, with the assistance of the grating located at the 
focal plane, we may convert the evanescent waves into the propagating waves which are detectable in vacuum [Fig. 
1(c)]. The far-field magnetic field is described as 
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�'A B 2�Awhere  and , . �' are unknown transmission coefficients 

of diffracted waves. Note that the range of wavevector integration covers all propagating regimes and some of 
evanescent regimes. The transmission coefficients are determined from measuring of the field intensity at a distance 

� from the grating and then fitting it with the intensity function C � � �
A
. There are many numerical 

techniques, such as curve fitting and interpolation method, which would support this fitting case [8]. 
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       When the amplitudes of the transmitted waves are experimentally measured, we Fourier transform Eq. (2) and 
shift the wavevector back by ��. Subwavelength image information is retrieved by inverse-Fourier transformation. 
The agreement of our retrieval technique and finite-element method (FEM) simulation [9] is shown in Fig. 2(a). 
       We confirm the robustness of the approach by reconstructing the image of single slits with width * � , 
� , and ��  located in an isotropic material. This case is different from the previous one because the spectrum 

distribution covers not only the evanescent regimes, but also the propagating regimes. Therefore, in order not to mix 
the propagating and evanescent modes, one may use the rigorously coupled wave analysis (RCWA) technique [10] 
to design a grating which can suppress � �  mode and magnify � �  modes. Following the procedure, Fig. 
2(b-d) compares the results from our method and FEM simulations. 

 

Fig.2. (a) image on the focal plane of the hypergratings; dashed and smooth curves correspond to “numerical experiments” and our retrieval 
technique, respectively; (b-d) retrieval of single slits with width * � , � , and �  in the isotropic material, respectively; 

To conclude, we proposed an approach to determine the size of the (subwavelength) focal spots with far-field 
measurements and computer post-processing. The approach, that utilizes a pre-designed diffraction grating located 
at the focal spot, is easily applicable to majority of subwavelength focusing systems, including metamaterials and 
plasmonic structures.  
 

This work has been partially supported by ONR (grant #N00014-07-1-0457), NSF (grant #ECCS-0724763), and 
AFOSR (grant #FA9550-09-1-0029). 
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Abstract: We develop a computational technique for imaging with subwavelength resolution 
based on far-field intensity measurements. 
 

High-resolution imaging is of interest for a broad class of applications spanning all parts of the electromagnetic 
spectrum. Unfortunately, conventional far-field imaging is fundamentally limited by the free-space wavelength. The 
diffraction limit can be halved with structured illumination microscopy where the spectrum of the incident light is 
effectively doubled via interference[1]. Alternatively, in the far-field superlens, part of the evanescent radiation 
emitted by an object is resonantly enhanced via surface plasmon polaritons, and is subsequently converted into 
propagating waves with a subwavelength diffraction grating[2]. Both techniques rely on multiple measurements and 
numerical reconstruction algorithms to perform imaging of an unknown object and achieve  resolution. Here 
we present an approach capable of non-resonant imaging with resolution on the order of  with far-field 
measurements[3].  

The fundamental difference between the diffraction-
limited and subwavelength images is seen in wavevector 
space. The spectrum of a subwavelength focal spot is 
dominated by high-wavenumber components that 
exponentially decay away from the focal spot.  The grating, 
that plays the role of image-reconstructing structure, 
located at the image plane, and translates the spectrum of 
the source according to 

 

,       (1) 
 

where  is the incident field wavevector, 
 is the diffraction order,  is the grating 

wavevector,  is the grating period, and  is the diffracted 
wavevector.  Note that diffraction gratings can convert the 
originally evanescent information into propagating waves 
which can be measured in the far field.  Provided that the 
far-field measurements of the same object are performed for different values of incident angle (different values of 

), the contributions of different diffraction orders to the final intensity distribution can be separated from each 
other, and the original field distribution can be calculated. Typical examples of the restored intensity distribution of 
subwavelength objects are shown in Fig. 1.  
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Fig.1. solid lines: images of single-slit sources of different 
sizes, obtained with the developed technique 
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We develop an analytical technique for retrieving the size and shape of subwavelength objects using
far-field measurements. The approach relies on subwavelength diffraction gratings scattering
evanescent information into the far field along with a numerical algorithm that is capable of
deconvoluting this information based on the far-field intensity measurements. Several examples are
presented, demonstrating resolution on the order of �0 /20. The developed method can be used at
any frequency range, and may become a practical alternative to scanning near-field microscopy.
© 2010 American Institute of Physics. �doi:10.1063/1.3487779�

High-resolution imaging is of interest for the broad class
of applications spanning all parts of electromagnetic spec-
trum. These applications include real-time biomolecule im-
aging, nanolithography, high capacity optical data storage
systems, and compact integrated optical telecom solutions.1–5

Electromagnetic metamaterials and plasmonic systems prom-
ise to conquer the diffraction limit and offer numerous solu-
tions to the inherent imaging constraints caused by the dif-
fraction limit.6–9 However, metamaterials alone may not be
perfect solutions to the problem. Indeed, while the light man-
agement inside metamaterial systems may be free from dif-
fraction, the finite wavelength of light in vacuum provides
substantial challenges in the experimental studies of nano-
photonics in free space.

Although near-field scanning optical microscopy10,11

provides a way to analyze subwavelength field distributions,
this technique suffers from nontrivial convolution of the field
pattern with the tip function. It is also implicitly slow and
does not support real-time imaging since the evanescent sig-
nal is collected on a point-by-point basis. Moreover, near-
field microscopy is limited to the optical and gigahertz parts
of the spectrum and is not available at mid- and far-IR and
terahertz frequencies. Another technique, called structured il-
lumination microscopy �SIM�,12,13 was shown to improve the
resolution of conventional optics by a factor of two by ana-
lyzing the light transmitted through a wavelength-scale
diffraction grating, under a set of different illumination con-
ditions. More recently, an approach called the far field super-
lens �FSL� that combines the resonant field enhancement of
near-field superlens6,14 with the scattering of �subwave-
length� surface plasmons into the propagating spectrum has
been presented in Refs. 15 and 16. Here we present a tech-
nique that combines the benefits of subwavelength resolution
of the FSL with the broadband performance of the SIM and
can be used to provide real-time imaging of unknown sub-
wavelength objects in the far-field with resolution on the
order of �0 /20 but is free of SIM and FSL limitations.

We demonstrate the developed formalism by recovering
the shape and size of several single and double slit-sources,

and suggest an application of the approach for restoration of
the field at the subwavelength focal spot of the anisotropy-
based planar focusing structure—hypergrating.9 Our analyti-
cal results are compared with finite-element-method �FEM�
simulations17 with good agreement.

The fundamental difference between the diffraction-
limited and subwavelength images is seen in wavevector
space. The spectrum of a subwavelength object is dominated
by high-wavenumber components that exponentially decay
away from the object. Measurement of these evanescent
components is impossible in the far-field regime. However, a
subwavelength grating, located at the object plane �Fig.
1�a��, can potentially help the image-reconstructing proce-
dure by converting evanescent waves into propagating
waves.18 The wavevector of the scattered wave qm would be
related to the wavevector kx of the incident wave by

qm = �kx − kx0� + mk�, �1�

where kx0 is the parallel-to-grating component of the
wavevector of the incident field, m is the integer diffraction
order, � is a �subwavelength� period of the grating, and k�

=2� /� �see Fig. 1�. In a sense, the subwavelength grating
shifts portions of the evanescent spectra into the propagating
regime �Fig. 1�b��, where the originally evanescent compo-
nents could be detected with far-field measurements. This
procedure, however, leads to overlapping of the original eva-
nescent signals with originally propagating waves; so that
extra measurements are required to deconvolute the different

a�Author to whom correspondence should be addressed. Electronic mail:
viktor_podolskiy@uml.edu.

FIG. 1. �Color online� �a� Schematic of the imaging configuration; an object
is placed close to the subwavelength plasmonic grating with period � �at
z�zobj� and is irradiated by a plane wave with incident angle �inc; the far-
field intensity is measured inside the material with permittivity �. �b� Trans-
fer of evanescent information into propagating regime by the mth diffraction
order of the grating; normal incidence is assumed.
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parts of the spectra from the far-field measurements. Both
SIM and FSL rely on the rotation of polarization of incident
light to attain additional measurements to perform the above
deconvolution. This procedure, however, is not desirable for
systems where the properties of the sample strongly depend
on polarization. Here we propose to fix the polarization of
incident light, and instead rotate its direction �given by the
angle of incidence �inc� as shown in Fig. 1�a�. The set of
measurements corresponding to different values of �inc is
then postprocessed with a numerical algorithm to restore the
unknown object.

Computationally, the problem of imaging can be reduced
to the problem of finding the unknown �complex� amplitudes
a�kx� of the Fourier-decomposition of the light scattered by
the object at the z=zobj plane as follows:

Hy
obj�x,zobj� = �

−�

�

dkxa�kx�exp�ikxx�exp�ikz�kx�zobj� , �2�

where the z-component of the wavevector kz is related to kx
through the dispersion relation.18 It is straightforward to
show that light propagating behind the grating is described
by

Hy�x,z,�inc� = �
m

�
n

wna�kx,n − kx0�tm�kx,n

− kx0�exp�iqmnx�exp�ikz�qmn�z� , �3�

where qmn= �kx,n−kx0�+mk�, kz�qmn�=	��2 /c2−qmn
2 , and �

is the permittivity of the �isotropic� medium where the field
is measured. The index m corresponds to the summation over
different diffraction orders while the index n represents the
numerical integration over kx with weighting factors wn �Fig.
1�b��.19 The efficiency of evanescent-to-propagating light
conversion by a diffraction grating is given by the optical
transfer function tm defined as

tm�kx,n − kx0� =
a�qmn�

a�kx,n − kx0�
, �4�

where a�kx,n−kx0� and a�qmn� are amplitudes in front of
�z	zobj� and behind �z
zobj� the grating, respectively. The
transfer function is assumed to be a known quantity; in our
work, tm is computed by the rigorously coupled wave analy-
sis technique.20 Our calculations show that the grating with
�=2�0 /3 provides substantial coupling between propagating
modes and evanescent spectrum covered by the first seven
diffraction orders which potentially yields a resolution of
�0 /20; better resolution may be achievable with further op-
timization of the grating parameters.

To determine the unknown transmission coefficients
a�kx,n−kx0� we fit the experimentally measured intensity dis-
tribution in the far field, Ip= 
hp
2, for a set of values of �inc to
Eq. �3� using the nonlinear least-squares fitting technique
based on the Gauss–Newton algorithm21 by minimizing the
difference

F = �
p=1

P

�Ip − 
Hy�xp,zp,�inc,p�
2�2, �5�

where the summation is extended over P data points
��inc,p ,xp ,zp ,hp�. Assuming that kx,n is smaller than a cutoff
wave vector kx,max, the unknown transmission coefficients
can be represented by following Taylor series:

a�k� = a0 + a1k1 + . . . + ajk
j + . . . . �6�

Finally, once the spectrum of the source is determined, the
object is recovered using Eq. �2�.

We now illustrate the developed formalism by consider-
ing the imaging of several single-slit sources with widths a
=�0 /2, �0 /4, �0 /8, and �0 /20 and double slit-slit sources
with two �0 /4 slits separated by �0 /5. We assume that all
linear dimensions are normalized to the free-space wave-
length �0, and use the following parameters for the plas-
monic grating: permittivity �g=−100, thickness h=�0 /10,
metallic filling factor f =0.5, and grating period �=2�0 /3.
To simulate experimental conditions, we calculate the inten-
sity behind the grating using a commercial software that
implements FEM solutions of Maxwell’s equations,17 and
use the calculated intensity as “experimental” input field Ip.
The good agreement of our retrieval technique for single and
double slits and their original configurations is shown in
Figs. 2, 3, and 4�a�.

We further apply the developed formalism to recover the
field distribution in the focal plane of the planar subwave-
length focusing device based on strongly anisotropic �hyper-
bolic� metamaterials, known as the hypergrating.9 A good
agreement between the original and recovered fields is found

FIG. 2. �Color online� Reconstruction �solid curves� of single slits with
width �a� �0 /2, �b� �0 /4, �c� �0 /8, and �d� �0 /20; dotted lines represent the
object size; vacuum-to-vacuum measurement is assumed.

FIG. 3. �Color online� Reconstruction �solid curves� of single slits �as in
Fig. 2� with a random 2% noise included.
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when using a grating with parameters �g=−12 962.6
+ i3726.0,22 h=�0 /80, f =0.5, and �=�0 / �	�z+	�0�, corre-
sponding to Cu at �0=20 �m. Note that the particular hy-
pergrating system, having �xy =−23.25+ i3.65 and �z=24.84
+ i0.69, used in our simulations suppresses small kx compo-
nents of the field �see Ref. 9 for more details�, so that the
image recovery can be achieved with a single �inc measure-
ment.

Finally, we analyze the tolerance of the developed for-
malism to imperfections, present in any experiment, by add-
ing a random 2% noise to “experimental” field distributions
from single slits, and averaging the field recovered upon sev-
eral noise realizations. Our simulations demonstrate that the
recovered procedure is relatively stable under small pertur-
bations �Fig. 3�. Noise tolerance will be the main limiting
factor of the proposed technique; it is natural to anticipate
that the signals corresponding to higher values of parameter
m in Eq. �4� would be more sensitive to imperfections in
measurements, as well as to imperfections in fabrication of
diffraction gratings.

In conclusion, we have proposed a technique capable of
retrieving unknown subwavelength images with far-field
measurements by using a diffraction grating with subwave-
length period and computer postprocessing. As compared
with previously introduced techniques, the proposed ap-
proach is implicitly nonresonant, and thus provides a rela-

tively large operating bandwidth. It also enables subwave-
length resolution ���0 /20�, and opens the door for real-time
imaging.

This work has been partially supported by ONR �Grant
No. N00014-07-1-0457�, NSF �Grant No. ECCS-0724763�,
and AFOSR �Grant No. FA9550-09-1-0029�.
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FIG. 4. �Color online� �a� Reconstruction of two �0 /4 slits separated by
�0 /5 �vacuum-to-vacuum measurement�. �b� Reconstruction of the sub-
wavelength focal spot of the hypergrating based on measurement in vacuum;
solid and dotted curves correspond to retrieved and original images,
respectively.
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